Measurements of bromine monoxide and iodine monoxide in the lower stratosphere: constraints on total inorganic bromine and iodine Theodore Koenig^{1,2}, Rainer Volkamer^{1,2}, Sunil Baidar^{1,2}, Barbara Dix¹, Elliot Atlas³, Sue Schauffler⁴, Valeria Donets³, Richard Lueb³, Maria Navarro³, Eric Apel⁴, Nicola Blake⁵, Alan Hill⁴, Rebecca Hornbrook⁴, Daniel Riemer³, Andrew Weinheimer⁴, Samuel Hall⁴, Kirk Ullmann⁴, Tom Hanisco⁶, Glenn Wolfe^{6,7}, Dan Anderson⁸, Teresa Campos⁴, Mike Reeves⁴, Pavel Romashkin⁴, Laura Pan⁴, Ross Salawitch⁸, Siyuan Wang^{1,9}, Alfonso Saiz-Lopez^{4,10}, Rafael Fernandez^{10,11}, Doug Kinnison⁴, Jean-Francois Lamarque⁴, Daniel Jacob¹², Johan Schmidt¹², Mathew Evans¹³, Tomas Sherwen¹³ ¹University of Colorado, Boulder, Colorado, USA Halogens have important direct and indirect effects on atmospheric chemistry e.g. ozone destruction, oxidative balance, mercury processing, particle seeding and growth. The monoxides of bromine and iodine (BrO and IO) are important constituents of inorganic halogens that were measured by the Airborne Multi AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS) instrument during the The CONvective TRansport of Active Species in the Tropics (CONTRAST) campaign. Here we examine two case studies – CONTRAST RF06 and RF15 – which sampled the tropical UTLS during a horizontal transect jet-crossing into the mid-latitude lower stratosphere. We have accomplished a first detection of IO in the lower stratosphere. We compare our observations with the global chemistry climate model CAM-Chem, and the global chemistry transport model GEOS-Chem. We further use a chemical box-model, constrained by measurements of BrO and IO as well as by AWAS, TOGA, and other measurements on the aircraft, to determine the total budgets of inorganic bromine and iodine, and investigate correlations of total Br_y and I_y with air mass indicators such as CFC-11. ²Cooperative Institute for Research in the Environmental Sciences, Boulder, Colorado, USA ³University of Miami, Miami, Florida, USA ⁴National Center for Atmospheric Research, Boulder, Colorado, USA ⁵University of California, Irvine, California, USA ⁶NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ⁷Joint Center for Earth Systems Technology, Baltimore, Maryland, USA ⁸University of Maryland, College Park, Maryland, USA ⁹Hong Kong University of Science and Technology, Hong Kong, China ¹⁰Consejo Superior de Investigaciones Científicas, Madrid, Spain ¹¹Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina ¹²Harvard University, Cambridge, Massachusetts, USA ¹³Universtiy of York, York, UK